ГОСТ 23949-80

Название RUS:

Электроды вольфрамовые сварочные неплавящиеся. Технические условия

Название EN:

Welding nonconsumable tungsten electrodes. Specifications

Статус:

действующий

Введен в действие:

1981-01-01

Описание:

Настоящий стандарт распространяется на электроды из чистого вольфрама и вольфрама с активирующими присадками (двуокиси тория, окисей лантана и иттрия), предназначенные для дуговой сварки неплавящимся электродом в среде инертных газов (аргон, гелий), а также для плахменных процессов резки, наплавки и напыления

Этот файл не являются официальным изданием. Материал данного документа предназначен для ознакомительных целей.

ЭЛЕКТРОДЫ ВОЛЬФРАМОВЫЕ СВАРОЧНЫЕ НЕПЛАВЯЩИЕСЯ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ЭЛЕКТРОДЫ ВОЛЬФРАМОВЫЕ СВАРОЧНЫЕ НЕПЛАВЯЩИЕСЯ

Технические условия

ΓΟCT 23949-80

Welding nonconsumable tungsten electrodes. Specifications

MKC 25.160.20 ΟΚΠ 18 5374 0000

Поставовлением Государственного комитета СССР по стандартам от 18 января 1980 г. № 217 дата введения уставовлена

c 01.01.81

Ограничение срока действия снято по протоколу № 4—93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4—94)

Настоящий стандарт распространяется на электроды из чистого вольфрама и вольфрама с активирующими присадками (двуокиси тория, окисей лантана и иттрия), предназначенные для дуговой сварки неплавящимся электродом в среде инертных газов (аргон, гелий), а также для плазменных процессов резки, наплавки и напыления.

МАРКИ

 В зависимости от химического состава электроды должны изготовляться из вольфрама марок, указанных в табл. 1.

Таблица 1

Марка	Код ОКП	Материал		
ЭВЧ ЭВЛ ЭВИ-1 ЭВИ-2 ЭВИ-3 ЭВТ-15	18 5374 1000 18 5374 2000 18 5374 3000 18 5374 4000 18 5374 5000 18 5374 6000	Вольфрам чистый Вольфрам с присадкой окиси лантана То же вольформ с присадкой двуокиси тория		

2. COPTAMENT

 Размеры электродов и предельные отклонения должны соответствовать указанным в табл. 2.

Издание официальное

Перепечатка воспрещена

*

Переиздание. Сентябрь 2004 г.

© Издательство стандартов, 1980 © ИПК Издательство стандартов, 2004

Марка	Номинальный диаметр	Предельное отклонение	Длина	
	0,5	±0,2	Не менее 3000 в мотках	
ЭВЧ	1,0; 1,6; 2,0; 2,5	±0,1	75±1; 150±1;	
	3,0; 4,0; 5,0; 6,0; 8,0; 10,0	±0,2	200±2; 300±2	
эвл	1,0; 1,6; 2,0; 2,5; 3,0; 4,0	±0,1	75±1; 150±1;	
	5,0; 6,0; 8,0; 10,0	±0,2	200±2; 300±2	
ЭВИ-1	2,0; 3,0; 4,0; 5,0; 6,0	±0,1	75±1; 150±1;	
3011-1	8,0; 10,0	±0,2	200±2; 300±2	
ЭВИ-2 ЭВИ-3	2,0; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0	±0,15	75±1; 150±1; 200±2; 300±2	
ЭВТ-15	2,0; 3,0; 4,0; 5,0; 6,0; 8,0; 10,0	±0,15	75±1; 150±1; 200±2; 300±2	

Пример условного обозначения электрода марки ЭВЛ, диаметром 2,0 мм, длиной 150 мм:

Электрод вольфрамовый ЭВЛ-Ø 2-150 - ГОСТ 23949-80

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

3.1. Вольфрамовые электроды должны изготовляться в соответствии с требованиями настоящего стандарта из марок чистого вольфрама и вольфрама с активирующими присадками, химический состав которых соответствует указанному в табл. 3.

Таблица 3

	Массоная доля, %					
		Присадки			Примеси, не более	
	Вольфрам., не менее	Окись лантана	Окись иттрия	Двуокись тория	Тантал	Алюминий, жёлезо, никель, кремний, кальций, молибден (сумма)
ЭВЧ ЭВЛ	99,92 99,95	- 1,1-1,4	-	-	-	0,08 0,05
ЭВИ-1 ЭВИ-2 ЭВИ-3 ЭВТ-15	99,89 99,95 99,95 99,91	1 1	1,5-2,3 2,0-3,0 2,5-3,5 -	- - - 1,5-2,0	0,01 0,01 —	0,11 0,05 0,05 0,09

Примечания:

- Указанные в таблице массовые доли окиси лантана, окиси иттрия, двуокиси тория и тантала входят в массовую долю вольфрама.
 - 2. Для марки ЭВЛ никель в сумму примесей не входит.
- 3.2. На поверхности электродов не должно быть раковин, расслоений, трещин, окислов, остатков технологических смазок, посторонних включений и загрязнений.

На поверхности электродов, обработанных бесцентровым шлифованием до размеров, указанных в табл. 2, не допускаются поперечные риски от шлифования глубиной более половины предельного отклонения на диаметр.

 Поверхность электродов, изготовленных волочением, должна быть очищена от окислов, технологических смазок и прочих загрязнений химической обработкой (травлением).

C. 3 FOCT 23949-80

На поверхности электродов не допускаются следы волочения глубиной более половины допуска на диаметр.

- З.4. Неравномерность диаметра по длине электродов и овальность не должны быть более предельных отклонений на диаметр.
- Электроды должны быть прямыми. Непрямолинейность электродов не должна быть более
 9.25 % длины.
- Торцы электродов должны иметь прямой срез. Не допускаются на торцевом срезе электродов сколы величиной более предельного отклонения на диаметр.
 - 3.7. Внутренние расслоения и трещины не допускаются.

4. ПРАВИЛА ПРИЕМКИ

4.1. Электроды принимают партиями. Партия должна состоять из электродов, изготовленных из шихты одного приготовления, и оформлена одним документом о качестве.

Документ о качестве должен содержать:

наименование предприятия-изготовителя и товарный знак предприятия-изготовителя;

наименование и марку продукта;

номер партии;

результат химического анализа;

дату изготовления;

массу партии и количество мест в партии;

обозначение стандарта.

Документ о качестве вкладывают в ящик № 1.

Масса партии не должна быть более 1300 кг.

 4.2. Для определения активирующих присадок отбирают три-пять сваренных или спеченных штабиков от каждой партии.

Определение примесей проводит предприятие-изготовитель на каждой партии вольфрамового порошка на выборке по ГОСТ 20559—75.

- Проверку соответствия электродов пп. 2.1, 3.2—3.7 проводят на каждом электроде.
- 4.4. При получении неудовлетворительных результатов по химическому составу по нему проводят повторные испытания на удвоенной выборке, взятой от той же партии. Результаты повторных испытаний распространяются на всю партию.

5. МЕТОДЫ ИСПЫТАНИЙ

5.1. Отбор и подготовка проб

5.1.1. Для определения активирующих присадок от выборки отбирают три-пять штабиков, отбивают кусочки массой 30—50 г и истирают их в механической ступке.

Полученный порощок подвергают магнитной сепарации.

Содержание примесей алюминия, железа, кремния, молибдена, кальция, никеля определяют по ГОСТ 14339.5—91.

Содержание активирующих присадок (двуокиси тория, лантана, иттрия) определяют по методикам, изложенным в приложении.

Содержание вольфрама определяют по разности 100 % и суммы содержания примесей.

- 5.3. Геометрические размеры, равномерность диаметра по длине и овальность электродов проверяют микрометром по ГОСТ 6507—90 или штангенциркулем по ГОСТ 166—89, а также линейкой по ГОСТ 427—75.
- Качество поверхности электродов проверяют визуально. При разногласии в оценке качества применяют оптические средства и измерительный инструмент.
- Прямолинейность электродов проверяют с помощью щупа по ТУ 2—034—225—87 на ровной металлической плите по ГОСТ 10905—86.
- Проверку отсутствия внутренних расслоений и трещин проводят с помощью токовихревого дефектоскопа.

6. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

6.1. Каждый электрод должен быть маркирован в соответствии с табл. 4.

Электроды диаметром 3,0 мм и более допускается маркировать снятием фасок 1 мм × 45° или рисок.

Маркировка должна быть нанесена на одном из концов электрода.

Маркировка может быть нанесена на торец в виде полосы или точки на поверхности у торца на длине $5-10\,$ мм.

Таблица 4

Марка	Цвет		
ЭВЧ	Не маркируется		
ЭВЛ	Черный		
ЭВИ-1	Синий		
ЭВИ-2	Фиолетовый		
ЭВИ-3	Зеленый		
ЭBT-15	Красный		

Цветную маркировку рекомендуется выполнять нитролаком НЦ-62 по нормативно-технической документации.

- 6.2. Электроды одной марки, одного диаметра должны укладываться в коробки из картона с ложементами из пенопласта, гофрированной или прессованной плотной бумаги.
 - 6.3. На каждую коробку с электродами наклеивают ярлык, содержащий:

наименование предприятия-изготовителя или его товарный знак;

наименование продукта;

условное обозначение продукта;

количество, шт.:

номер партии;

дату выпуска;

вид маркировки;

штамп технического контроля.

6.4. Коробки с электродами упаковывают в дощатые ящики по ГОСТ 2991—85 тип 1 или 2, выложенные внутри упаковочной водонепроницаемой бумагой по ГОСТ 8828—89. Оставшийся свободный объем ящика плотно заполняют упаковочной бумагой или ватой по ГОСТ 5679—91.

Масса ящика брутто — не более 40 кг.

 6.5. Маркировку ящика проводят по ГОСТ 14192—96 с нанесением дополнительных данных: наименования, марки, размеров электродов;

номера партии;

даты упаковки;

массы нетто.

Упакованные электроды транспортируют всеми видами транспорта в крытых транспортных средствах.

При транспортировке укладка ящиков должна предупреждать их перемещения, механические повреждения упаковки и электродов, попадание влаги.

Условия транспортирования в части воздействия климатических факторов — по группе Ж ГОСТ 15150—69.

6.7. Хранить электроды следует в упаковке, предусмотренной п. 6.4, по группе условий хранения Л ГОСТ 15150—69.

1. МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ОКИСИ ЛАНТАНА

Метод устанавливает определение окиси лантана в лантанированных сварных вольфрамовых штабиках и электродах.

1.1. Сущность метода

Метод основан на отделении лантана от вольфрама растворением предварительно окисленного и прокаленного испытуемого образца до вольфрамового ангидрида (WO₃) в растворе углекислого натрия.

При этом дантан, находящийся в вольфраме в виде La₂O₃, выпадает в осадок, а растворимую форму дантана доосаждают аммиаком в виде La(OH)₃.

Осадок отфильтровывают, растворяют в соляной кислоте и вновь осаждают весь лантан аммиаком в виде La(OH)₃, который отфильтровывают, промывают и прокаливают до La₂O₃.

Погрешность метода при массовой доле окиси лантана от 1 % до 3 % составляет 0.1 % при массовой доле окиси лантана менее 1 %-0.05 %.

1.2. Реактивы

Натрий углекислый кристаллический по ГОСТ 84—76, 30 %-ный раствор,

Аммиак водный по ГОСТ 3760-79, 25 %-ный раствор.

Кислота соляная по ГОСТ 3118-77, плотность 1,12 г/см3.

Вода дистиллированная по ГОСТ 6709—72.

1.3. Подготовка проб

Вольфрамовый ангидрид предварительно прокаливают в муфельной печи при 700—750 °C в течение 1.5—2 ч

Вольфрамовый порошок, пробу от штабика или электрода окисляют до ангидрида прокаливанием в муфельной печи при температуре 700—750 °C. При этом образец насыпают в фарфоровый тигель на 1/3 его высоты и ставят в муфель при 400—500 °C на 1,5—2 ч, а затем повышают температуру до 700—750 °C и выдерживают тигель до полного окисления порошка (~3 ч).

Для равномерного окисления вольфрама тигель два-три раза вынимают из печи и образец перемешивают.

1.4. Проведение анализа

2—3 г вольфрамового ангидрида помещают в стакан на 150—200 см³, приливают 50—70 см³ раствора углекислого натрия и растворяют при нагревании.

После растворения вольфрамового ангидрида раствор разбавляют дистиплированной водой до объема ~100 см³, прибавляют 20—30 см³ раствора аммиака, стакан помещают на электрическую баню и дают осадку скоагулировать. Осадок фильтруют через фильтр — «белая лента» с адсорбентом, промывают теплым 5 %-ным раствором аммиака; фильтр с осадком помещают в стакан, в котором велось осаждение, добавляют 15—20 см³ соляной кислоты и нагревают содержимое стакана до полного растворения осадка и моцерации фильтра.

Содержание стакана разбавляют дистиллированной водой до 80—100 см³, бумажную массу отфильтровывают, два-три раза промывают подкисленной горячей водой, соединяя промывные воды с основным фильтратом.

Фильтрат нейтрализуют раствором аммиака по лакмусу, после чего приливают еще 15—20 см³ аммиака. Осадок La(OH)₃ дают скоагулировать, затем его фильтруют через фильтр — «белая лента» с адсорбентом. Осадок промывают горячей водой, в которую добавлено несколько капель раствора аммиака до отрицательной реакции на Cl (проба с AgNO₃ и HNO₃).

Промытый осадок с фильтром помещают в предварительно прокаленный и взвешенный фарфоровый тигель, озоляют и прокаливают в муфельной печи при температуре 700—750 °C до постоянной массы.

1.5. Обработка результатов

Массовую долю окиси лантана в процентах вычисляют по формуле

$$La_2O_3 = \frac{m}{m_1 \cdot 0,7931} \cdot 100,$$

где m — масса осадка, r;

т — масса навески вольфрамового ангидрида (WO₃), г;

0,7931 — коэффициент пересчета с вольфрамового ангидрида на вольфрам.

П р и м е ч а н и е. Прокаленный осадок окиси лантана содержит окись железа, количество которой очень мало по сравнению с количеством окиси лантана, поэтому массой окиси железа можно пренебречь.

Если же требуется определение чистой окиси лантата, то прокаленный осадок растворяют в соляной кислоте, колориметрируют железо и по разности определяют массу окиси лантана.

2. МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ОКИСИ ИТТРИЯ

Метод устанавливает определение окиси иттрия в иттрированных сварных вольфрамовых штабиках и электродах.

2.1. Сущность метода

Метод основан на отделении иттрия от вольфрама растворением испытуемого образца во фтористоводородной кислоте с добавлением азотной кислоты.

При массовой доле окиси иттрия от 1 до 3 % погрешность метода составляет 4-5 %.

2.2. Аппаратура, реактивы и растворы

Шкаф сушильный, обеспечивающий нагрев до температуры (150±50) °C.

Печь муфельная с термопарой, обеспечивающая нагрев до температуры (1100±50) °С.

Чашки и тигли платиновые — ГОСТ 6563—75.

Посуда лабораторная фарфоровая — ГОСТ 9147—80.

Кислота фтористоводородная (плавиковая кислота) — по ГОСТ 10484—78.

Кислота азотная — ГОСТ 4461-77.

Аммиак водный - ГОСТ 3760-79, разбавленный 1:1.

Воронки полиэтиленовые.

Вода дистиллированная — ГОСТ 6709—72.

Спирт этиловый ректификованный — ГОСТ 5962-67*.

Бумага фильтровальная дабораторная — ГОСТ 12026—76.

2.3. Подготовка проб

Образцы иттрированного вольфрама очищают от возможного загрязнения промыванием их несколько раз спиртом и последующей сушкой в сушильном шкафу при температуре 50—70 °C в течение 10 мин.

Подготовленные образцы хранят в стеклянных бюксах или пробирках с притертыми пробками.

2.4. Проведение анализа

Навеску массой 1 г помещают в платиновую чашку вместимостью 100 см³, прибавляют 25—30 см³ плавиковой кислоты и осторожно по каплям добавляют азотную кислоту до растворения металла.

После полного растворения вольфрама и прекращения выделения окислов азота в чашку добавляют 30 см³ воды, нагретой до температуры 80—90 °C.

Раствору с осадком дают отстояться в течение 1 ч, после чего фильтруют через полиэтиленовую воронку. Перед фильтрованием на фильтр помещают небольшое количество адсорбента.

После перенесения осадка на фильтр дно чашки обтирают кусочком мокрого фильтра и все содержимос на нем сливают на фильтр горячей водой. Затем осадок промывают пять-шесть раз горячим раствором аммиака (60—70 °C) и еще два-три раза горячей водой.

Промытый осадок переносят в предварительно взвешенный фарфоровый тигель, высушивают в сушильном шкафу при температуре 100—150 °C, а затем прокаливают в муфельной печи при температуре 650—700 °C до постоянной массы и взвешивают в виде окиси итгрия.

2.5. Обработка результатов

Массовую долю окиси иттрия в процентах вычисляют по формуле

$$Y_2O_3 = \frac{m}{m_1} \cdot 100,$$

где m - масса прокаленного остатка, г;

т — масса навески образца, г.

3. МЕТОД ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ДВУОКИСИ ТОРИЯ

Метод устанавливает определения двуокиси тория в торированных сварных вольфрамовых штабиках и электродах.

3.1. Сущность метода

Метод основан на образовании осадка ThF₄·4H₂O при растворении образца в смеси фтористоводородной и азотной кислот

Погрешность метода при массовой доле двуокиси тория от 1,5 % до 2 % составляет 0,1 %.

3.2. Реактивы

Кислота фтористоводородная (плавиковая) — ГОСТ 10484—78.

Кислота азотная по ГОСТ 4461-77.

Аммиак водный по ГОСТ 3760-79, разбавленный 1:1.

Вода дистиллированная по ГОСТ 6709-72.

3.3. Подготовка проб

Образцы кипитит в течение нескольких минут в растворе щелочи до полного снятия окислов с поверхности, промывают в дистиллированной воде и сущат в сущильном шкафу.

На территории Российской Федерации действует ГОСТ Р 51652—2000.

C. 7 FOCT 23949-80

3.4. Проведение анализа

Навеску массой 1—2 г помещают в платиновую чашку вместимостью 100 см³, прибавляют 25—30 см³ плавиковой кислоты и осторожно по каплям прибавляют азотную кислоту.

После полного растворения вольфрама и прекращения выделения окислов азота в чашку добавляют 30 см³ горячей воды. Раствору с осадком окиси тория дают отстояться в течение 1 ч, после чего фильтруют через каучуковую, винипластовую или платиновую воронку.

Перед фильтрованием на фильтр помещают небольшое количество адсорбента.

После перенесения осадка на фильтр дно чашки обтирают кусочком мокрого фильтра и обмывают чашку горячей водой. Когда осадок окиси тория полностью перенесен на фильтр, его несколько раз промывают горячей водой, а затем пять-шесть раз горячим раствором аммиака и еще два-три раза горячей водой.

Влажный фильтр переносят в предварительно взвешенный до постоянной массы фарфоровый или платиновый тигель, озоляют, прокаливают при температуре 750—800 °С и взвешивают.

Одновременно проводят контрольный опыт со всеми реактивами.

3.5. Обработка результатов

Массовую долю двуокиси тория в процентах вычисляют по формуле

$$ThO_2 = \frac{(m - m_1)}{m_2} \cdot 100,$$

где m - масса осадка ThO2, г;

т — масса осадка в контрольном опыте, г;

т₂ — масса навески образца, г.

Редактор Р.Г. Говервовская Технический редактор Л.А. Гусева Корректор Р.А. Ментова Компьютерная верстка И.А. Налейкиной

Изд. лиц. № 02354 от 14.07,2000. Сдано в набор 29.09.2004. Подписано в печать 15.10.2004. Усл. печ.л. 0,93. Уч.-изд.л. 0,75. Тираж. 90 экз. С 4203. Зак. 908.

ИПК Издательство стандартов, 107076 Москва, Колодезный пёр., 14. http://www.standards.ru e-mail; info@standards.ru Набрано в Издательстве на ПЭВМ